A Card Shuffling Analysis of Deformations of the Plancherel Measure of the Symmetric Group

نویسنده

  • Jason E. Fulman
چکیده

This paper finds and analyzes a formula for the total variation distance between iterations of riffle shuffles and iterations of “cut and then riffle shuffle”. This allows one to obtain information about the convergence rate of permutation statistics (such as the length of the longest increasing subsequence or position of a given card) under these processes. Similar results are given for affine shuffles, which allow us to determine their convergence rate to randomness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On spectral properties of Schrödinger–type operators with complex potential, Recent developments in operator theory and its applications, Operator Theory

We study deformations of the Plancherel measure of the symmetric group by lifting them to the symmetric group and using combina-torics of card shuffling. The existing methods for analyzing deformations of Plancherel measure are not obviously applicable to the examples in this paper. The main idea of this paper is to find and analyze a formula for the total variation distance between iterations ...

متن کامل

Asymptotics of Plancherel Measures for Symmetric Groups

1.1. Plancherel measures. Given a finite group G, by the corresponding Plancherel measure we mean the probability measure on the set G∧ of irreducible representations of G which assigns to a representation π ∈ G∧ the weight (dim π)/|G|. For the symmetric group S(n), the set S(n)∧ is the set of partitions λ of the number n, which we shall identify with Young diagrams with n squares throughout th...

متن کامل

Stein's Method and Plancherel Measure of the Symmetric Group Running Head: Stein's Method and Plancherel Measure

X iv :m at h/ 03 05 42 3v 3 [ m at h. R T ] 1 1 N ov 2 00 3 Stein’s Method and Plancherel Measure of the Symmetric Group Running head: Stein’s Method and Plancherel Measure By Jason Fulman University of Pittsburgh Department of Mathematics 301 Thackeray Hall Pittsburgh, PA 15260 Email: [email protected] Abstract: We initiate a Stein’s method approach to the study of the Plancherel measure of...

متن کامل

Applications of the Brauer complex : card shuffling , permutation statistics , and dynamical systems

By algebraic group theory, there is a map from the semisimple conjugacy classes of a finite group of Lie type to the conjugacy classes of the Weyl group. Picking a semisimple class uniformly at random yields a probability measure on conjugacy classes of the Weyl group. Using the Brauer complex, it is proved that this measure agrees with a second measure on conjugacy classes of the Weyl group in...

متن کامل

On Transience of Card Shuffling

We present simple proofs of transience/recurrence for certain card shuffling models, that is, random walks on the infinite symmetric group. 1. Card shuffling models In this note, we consider several models of shuffling an infinite deck of cards. One of these models has been considered previously by Lawler [La]; our methods (using flows, shorting and comparison of Dirichlet forms) will – partial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2004